Abstract

Physical models are used to model reflections from target primitives commonly encountered in mobile robot applications. These targets are differentiated by employing a multitransducer pulse/echo system which relies on both amplitude and time-of-flight (TOF) data in the feature fusion process, allowing more robust differentiation. Target features are generated as being evidentially tied to degrees of belief which are subsequently fused for multiple logical sonars at different geographical sites. This evidential approach helps to overcome the vulnerability of echo amplitude to noise and enables the modeling of nonparametric uncertainty. Feature data from multiple logical sensors are fused with Dempster-Shafer rule of combination to improve the performance of classification by reducing perception uncertainty. Using three sensing nodes, improvement in differentiation is between 20-40% without false decision, at the cost of additional computation. Simulation results are verified by experiments with a real sonar system. This evidential approach helps to overcome the vulnerability of the echo amplitude to noise and enables the modeling of nonparametric uncertainty in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.