Abstract
In this work, carbon nanotube (CNT) was used to fabricate poly(vinylidene fluoride) (PVDF)/high density polyethylene (HDPE) blend-based nanocomposites via a Haake mixer. Scanning electron microscopy confirmed that the CNT was mainly selectively located in the HDPE dispersed domains. Thermogravimetric analysis revealed that CNT addition improved the thermal stability of the blend (up to 61 °C increase at 3-phr CNT loading at 40 wt% loss) in air environment. Differential scanning calorimetry results revealed the enhanced nucleation of individual PVDF and HDPE upon crystallization in the composites; the presence of CNT inceased the stability of PVDF crystals. CNT addition increased the heat distortion temperature of the blend by up to 27 °C at 3-phr CNT loading. The complex viscosity and storage modulus increased due to the CNT pseudo-network formation in the reduce-sized HDPE phase of the composites. The rigidity of the blend was significantly improved after the addition of CNT. The impact strength of the blend increased by up to 66% after 2-phr CNT loading, and the electrical resistivity of the blend decreased by up to nine orders at 3-phr CNT loading due to the double percolation-like morphology formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.