Abstract

Globally, policies aiming for conservation of species, free-flowing rivers, and promotion of hydroelectricity as renewable energy and as a means to decarbonize energy systems generate trade-offs between protecting freshwater fauna and development of hydropower. Hydroelectric turbines put fish at risk of severe injury during passage. Therefore, comprehensive, reliable analyses of turbine-induced fish mortality are pivotal to support an informed debate on the sustainability of hydropower (i.e., how much a society is willing to pay in terms of costs incurred on rivers and their biota). We compiled and examined a comprehensive, global data set of turbine fish-mortality assessments involving >275,000 individual fish of 75 species to estimate mortality across turbine types and fish species. Average fish mortality from hydroelectric turbines was 22.3% (95% CI 17.5-26.7%) when accounting for common uncertainties related to empirical estimates (e.g., handling- or catch-related effects). Mortality estimates were highly variable among and within different turbine types, study methods, and taxa. Technical configurations of hydroelectric turbines that successfully reduce fish mortality and fish-protective hydropower operation as a global standard could balance the need for renewable energy with protection of fish biodiversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.