Abstract

Due to the absence of clear and unambiguous theoretical signals of the deconfinement transition from hadron matter to quark-gluon plasma (QGP) the experimental searches of QGP formation are based the analysis of various irregularities in the collision energy dependence of thermodynamic and hydrodynamic quantities. Here we present several remarkable irregularities at chemical freeze-out (CFO) of hadrons which are found using an advanced version of the hadron resonance gas model (HRGM). Among them are the sharp peaks of the trace anomaly and baryonic density which are seen at the center of mass energies √sNN = 4.9 GeV and √sNN = 9.2 GeV, and the two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center of mass energies 3.8-4.9 GeV and 7.6-10 GeV. In addition we found a significant change of slope of the hadron yield ratios and , when the center of mass collision energy increases from 4.3 GeV to 4.9 GeV and from 7.6 GeV to 9.2 GeV [1]. The increase of slopes of these ratios at the collision energy interval 4.3-4.9 GeV is accompanied by a dramatic growth of resonance decays at CFO. We argue that such a strong correlation between the previously found irregularities and an enhancement of strangeness production can serve as the quark-gluon plasma formation signature. Hence, we conclude that a dramatic change of the system properties seen in the narrow collision energy range √sNN = 4.3-4.9 GeV may open entirely new possibilities for experimental studies of QGP properties at NICA JINR and FAIR GSI accelerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call