Abstract

The TiO(2) photosensitized oxidation in water of a series of X-ring substituted benzyl alcohols gives the corresponding benzaldehyde. Kinetic evidence (from competitive experiments) suggests a single electron transfer (SET) mechanism with a changeover of the electron abstraction site from the aromatic moiety (X=4-OCH(3), 4-CH(3), H and 3-Cl) to the hydroxylic group (X=3-CF(3) and 4-CF(3)), probably due to the preferential adsorption of the above OH group on the TiO(2) surface. The same photo-oxidation of a series of 1-(X-phenyl)-1,2-ethanediols and of 2-(X-phenyl)-1,2-propanediols gives the corresponding benzaldehyde and acetophenone, respectively, accompanied by formaldehyde, whereas a series of symmetrically X-ring-substituted 1,2-diphenyl-1,2-ethanediols yields the corresponding benzaldehyde (substrate/product molar ratio=0.5). The relative rate values suggest a SET mechanism in all of the series, with electron abstraction from one of the two OH groups of all the considered diols, probably due to the much higher adsorption of the above groups (due to the chelation effect) on the semiconductor. Further confirmation of this mechanistic behaviour has been obtained from laser flash photolysis experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call