Abstract

The present study was conceived to elucidate the potential importance of the D1 turnover-mediated repair mechanism in UV-B tolerance of the photosynthetic apparatus in microalgae. To this end, the lab-identified UV-B sensitive and tolerant species of Chlorophyte and Chromophyte algae was used to examine photosynthetic response to UV-B exposure in the presence vs. the absence of streptomycin, an inhibitor of chloroplast protein synthesis. Measurements of photosynthetic O2 evolution capacity and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII) illustrated species-specific UV-B sensitivity of the photosynthetic apparatus. Addition of the inhibitor streptomycin caused significant enhancements of UV-B-caused depression of photosynthesis in UV-B tolerant species, while little effect was observed in the sensitive species. In the tolerant species, recovery from UV-B induced 20 percnt; decline in Fv/Fm reached completion within 2 hours, much faster than that in the sensitive species. Immunoblotting revealed that exposure to UV-B radiation caused substantial degradation of the D1 protein in the sensitive Heterococcus brevicellularis, which was little enhanced by addition of the inhibitor. The same UV-B exposure lead to less D1 degradation in the tolerant Scenedesmus sp., which was significantly enhanced by addition of the inhibitor. This study shows that UV-B tolerance of the photosynthetic apparatus in microalgae was associated with a strong capacity for recovery from the UV-B-induced damage and this capacity related to the D1 turnover-mediated repair cycle, and largely determined UV-B tolerance of the photosynthetic apparatus in these organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call