Abstract

Tropomyosin receptor kinase B (TrkB) is best known as the receptor for brain-derived neurotrophic factor (BDNF). In humans, three major isoforms of TrkB, the full-length receptor (TrkB-TK+) and two C-terminal truncated receptors (TrkB-TK− and TrkB-Shc) are expressed in various tissues. In comparison to TrkB-TK+ and TrkB-TK−, TrkB-Shc is less well characterized. In this study, we analyzed the biological function of the TrkB-Shc receptor in response to exogenous BDNF treatment. In experiments transiently overexpressing TrkB-Shc in CHOK1 cells, we found that TrkB-Shc protein levels were rapidly decreased when cells were exposed to exogenous BDNF. When we assessed the functional impact of TrkB-Shc on TrkB-TK+ activity, we found that phosphorylated TrkB-TK+ protein levels were significantly decreased in the presence of TrkB-Shc and moreso following BDNF exposure. Interestingly, while the reduction of phosphorylated TrkB-TK+ protein was more pronounced in the presence of TrkB-Shc following BDNF exposure, the stability of TrkB-Shc protein itself was increased. Our findings suggest that cells may increase TrkB-Shc protein levels in response to exogenous BDNF exposure to regulate TrkB-TK+ activity by increasing degradation of activated receptor complexes as a means to prevent overactivation or inappropriate temporal and spatial activation of BDNF/TrkB-TK+ signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.