Abstract
Immunocytochemical techniques were employed to examine the temporal ordering whereby amyloid beta-protein (A beta P) and neuronal elements collectively come together to form senile plaques in Alzheimer's disease (AD). Specifically, we addressed three questions: (1) whether A beta P deposition precedes or follows neuritic changes; (2) whether paired helical filament (PHF) formation is an early or late event in the genesis of the dystrophic neurites which participate in plaque formation; and (3) whether the density of senile plaques displays any relationship with the prevalence of PHF or Alz-50 containing neurons. To address these questions we studied the amygdala from a group of patients with AD, a group of nondemented age-matched individuals exhibiting a sufficient number of senile plaques to be classified by neuropathological criteria as AD, and a group of age-matched controls without AD pathology. Amyloid-bearing plaques were demonstrated by A beta P immunolabeling and thioflavine-S staining. Neuritic changes in the form of dystrophic neurites were observed with the aid of antibodies against PHF, Alz-50, as well as antibodies against several neuropeptides (i.e., substance P, somatostatin, and neurotensin) and the acetylcholine biosynthetic enzyme, choline acetyltransferase. By using a graded range of pathologic changes both within and across the patient population to provide us with a means of evaluating plaque deposition from its earliest to most advanced stages of development, we observed in patients and/or regions of the amygdala displaying a mild degree of pathologic change A beta P deposition in the absence of any neuritic changes. With increasing density of A beta P, however, we began to observe dystrophic neurites within plaques. In regions of relatively few plaques, the dystrophic neurites were immunolabeled only with antibodies against the various neurotransmitters and they lacked evidence of cytoskeletal pathology (i.e., Alz-50 or PHF). Only as the density of A beta P increased further within a region, were dystrophic neurites observed that exhibited Alz-50 or PHF. In no instance did we observe a relationship between the density of A beta P deposition and the density of Alz-50 or PHF-immunoreactive neurons. Collectively, our data suggest that the deposition of A beta P is an early pathologic event in senile plaque formation. Thereafter, swollen neurites can be seen in the vicinity of A beta P. This early neuritic response, which can first be visualized by immunolabeling for one or another transmitter substance, is followed by alterations in the cytoskeleton as recognized initially by antibodies to Alz-50 and subsequently by the presence of PHF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.