Abstract

The conversion of the membrane area in the "contact zones" shared by erythrocyte ghosts held in contact by dielectrophoresis into a fusion product by electrofusion was studied by both light and electron microscopy. Fusion products fell into two categories: (a) those with a freely expanding open lumen which ended in the "giant cell morphology" and with considerable internal vesicle membrane fragments, and (b) linear chains of polyghosts with long term stability but having planar diaphragms at the ghost-ghost junctions. Thin section electron microscopy showed each of these planar diaphragms to be a double membrane septum multiply-perforated with fusion pores. Heat and low ionic strength treatments known to denature or detach spectrin caused the stable planar diaphragms to dissolve, thereby quickly converting the polyghost chains to the giant cell morphology, thereby suggesting that spectrin restricts fusion zone diameter expansion if it is intact. Other indications suggest that the expansion of the open lumens appears to take place as a result of one or more membrane-specific forces with a nonosmotic origin but this tendency to expansion can be overcome if the spectrin network on only one side of a contact zone is intact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.