Abstract
Adenosine 3',5'-monophosphate (cyclic AMP) mediates cell aggregation in Dictyostelium discoideum. Cell aggregation is enhanced by pulses of cyclic AMP. Application of pulses of cyclic AMP to cells that were starved only for 1 h (postvegetative cells) induces enzyme activity. One of the enzymes induced by cyclic AMP pulses is phosphodiesterase. We pulsed postvegetative cells with a set of cyclic AMP derivatives that were selected according to certain conformational and physical-chemical properties, and we measured their effect on the induction of phosphodiesterase activity. The cyclic nucleotide specificity for chemotaxis in the aggregative phase was similar to the specificity for phosphodiesterase induction in the postvegetative phase. The shape of the dose-response curves shows a paradox: the activity of a derivative, when applied at receptor-saturating concentrations, is inversely related to its affinity. These results can be explained by the assumption that the response of the chemoreceptor to different cyclic AMP derivatives is proportional to the frequency of associations (rate receptor) and not to the proportion of occupied receptors (occupation receptor). The characteristics of rate receptors and occupation receptors during chemosensory transduction will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.