Abstract

The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is rapidly degraded in the circulation by dipeptidyl peptidase IV forming the N-terminally truncated peptide GIP(3-42). The present study examined the biological activity of this abundant circulating fragment peptide to establish its possible role in GIP action. Human GIP and GIP(3-42) were synthesised by Fmoc solid-phase peptide synthesis, purified by HPLC and characterised by electrospray ionisation-mass spectrometry. In GIP receptor-transfected Chinese hamster lung fibroblasts, GIP(3-42) dose dependently inhibited GIP-stimulated (10(-7) M) cAMP production (up to 75.4+/-5.4%; P<0.001). In BRIN-BD11 cells, GIP(3-42) was significantly less potent at stimulating insulin secretion (1.9- to 3.2-fold; P<0.001), compared with native GIP and significantly inhibited GIP-stimulated (10(-7) M) insulin secretion with maximal inhibition (48.8+/-6.2%; P<0.001) observed at 10(-7) M. In (ob/ob) mice, administration of GIP(3-42) significantly inhibited GIP-stimulated insulin release (2.1-fold decrease; P<0.001) and exaggerated the glycaemic excursion (1.4-fold; P<0.001) induced by a conjoint glucose load. These data indicate that the N-terminally truncated GIP(3-42) fragment acts as a GIP receptor antagonist, moderating the insulin secreting and metabolic actions of GIP in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.