Abstract

1-Methyl-4-phenylpyridinium (MPP+), the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), interrupts mitochondrial electron transfer at the NADH dehydrogenase-ubiquinone junction, as do the respiratory chain inhibitors rotenone, piericidin A and barbiturates. Proof that these classical respiratory chain inhibitors and MPP+ react at the same site in the complex NADH dehydrogenase molecule has been difficult to obtain because none of these compounds bind covalently to the target. The 4'-alkyl derivatives of MPP+ inhibit NADH oxidation in submitochondrial particles at much lower concentrations than does MPP+ itself, but still dissociate on washing the membrane preparations, with consequent re-activation of the enzyme. The MPP+ analogues with short alkyl chains prevent the binding of 14C-labelled piericidin A to the membrane and thus must act at the same site, but analogues with alkyl chains longer than heptyl do not prevent binding of [14C]piericidin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.