Abstract

Global genomic repair (GGR) and transcription coupled repair (TCR) are two pathways of nucleotide excision repair (NER) that differ in the damage recognition step. How NER factors, especially GGR factors, access DNA damage in the chromatin of eukaryotic cells has been poorly understood. Dot1, a histone methyltransferase required for methylation of histone H3 lysine 79 (H3K79), has been shown to confer yeast cells with resistance to DNA-damaging agents and play a role in activation of DNA damage checkpoints. Here, we show that Dot1 and H3K79 methylation are required for GGR in both nucleosomal core regions and internucleosomal linker DNA, but play no role in TCR. H3K79 trimethylation contributes to but is not absolutely required for GGR, and lower levels of H3K79 methylation (mono- and dimethylation) also promote GGR. Our results also indicate that the roles of Dot1 and H3K79 methylation in GGR are not achieved by either activating DNA damage checkpoints or regulating the expression of the GGR-specific factor Rad16. Rather, the methylated H3K79 may serve as a docking site for the GGR machinery on the chromatin. Our studies identified a novel GGR-specific NER factor and unveiled the critical link between a covalent histone modification and GGR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.