Abstract

We have investigated the generation of the compound action potential (CAP) from the auditory nerve of guinea pigs. Responses to acoustic tone-bursts were recorded from the round window (RW), throughout the cochlear fluids, from the surface of the cochlear nucleus, from the central end of the auditory nerve after removal of the cochlear nucleus, from the scalp vertex, and from the contralateral ear. Responses were compared before, during and after experimental manipulations including pharmacological blockade of the auditory nerve, section of the auditory nerve, section of the efferent nerves, removal of the cochlear nucleus, and focal cooling of the cochlear nerve and/or cochlear nucleus. Regardless of the waveform changes occurring with these manipulations, the responses were similar in waveform but inverted polarity across the internal auditory meatus. The CAP waveforms were very similar before and after removal of the cochlear nucleus, apart from transient changes that could last many minutes. This suggests that the main CAP components are generated entirely by the eighth nerve. Based on previous studies and a clear understanding of the generation of extracellular potentials, we suggest that the early components in the responses recorded from the round window, from the cochlear fluids, from the surface of the cochlear nucleus, or from the scalp are a far-field or stationary potential, generated when the circulating action currents associated with each auditory neurone encounters a high extracellular resistance as it passes through the dura mater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call