Abstract

Retinal cell differentiation leads to resistance to apoptosis induced by inhibition of protein synthesis, suggesting the accumulation of anti-apoptotic proteins. The redox factor/AP endonuclease Ref-1 (APE, APEX, HAP1) affects both DNA repair and the activity of various transcription factors, and controls sensitivity to genotoxic insults. We studied the expression of Ref-1 in the retina and brain of developing rats. Ref-1 immunoreactivity increased progressively within the nucleus of differentiating retinal cells, whereas it decreased in the developing hippocampal formation. During both natural and experimentally-induced cell death, Ref-1 disappeared from the nucleus of apoptotic cells. Degradation of Ref-1 in axotomized ganglion cells preceded the morphological characteristics of apoptosis. The sensitivity to apoptosis triggered by either thapsigargin or okadaic acid was the highest in photoreceptors, that contain the least Ref-1 among differentiated retinal cells. In both these differentiated cell types, inhibition of protein synthesis prevented the loss of Ref-1 and rescued the neurons. The data suggest that Ref-1 is an anti-apoptotic protein associated with cell differentiation in the retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call