Abstract

Mutations in SPT10 and SPT21 of Saccharomyces cerevisiae have been previously shown to cause two prominent mutant phenotypes: (1) defects in transcription of particular histone genes and (2) suppression of Ty and delta-insertion mutations (Spt(-) phenotype). The requirement for Spt10 and Spt21 for transcription of particular histone genes suggested that they may interact with two factors previously shown to be present at histone loci, SBF (Swi4 and Swi6) and MBF (Mbp1 and Swi6). Therefore, we have studied swi4Delta, mbp1Delta, and swi6Delta mutants with respect to histone gene transcription and for interactions with spt10Delta and spt21Delta. Our results suggest that MBF and SBF play only modest roles in activation of histone gene transcription. In addition, we were surprised to find that swi4Delta, mbp1Delta, and swi6Delta mutations suppress the spt21Delta Spt(-) phenotype, but not the spt21Delta defect in histone gene transcription. In contrast, both swi4Delta and mbp1Delta cause lethality when combined with spt10Delta. To learn more about mutations that can suppress the spt21Delta Spt(-) phenotype, we performed a genetic screen and identified spt21Delta suppressors in seven additional genes. Three of these spt21Delta suppressors also cause lethality when combined with spt10Delta. Analysis of one spt21Delta suppressor, reg1, led to the finding that hyperactivation of Snf1 kinase, as caused by reg1Delta, suppresses the Spt(-) phenotype of spt21Delta. Taken together, these genetic interactions suggest distinct roles for Spt21 and Spt10 in vivo that are sensitive to multiple perturbations in transcription networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.