Abstract

Retroviral transduction of cellular nucleic acid sequences requires illegitimate RNA or DNA recombination. To test a model that postulates transduction via efficient illegitimate recombination during reverse transcription of viral and cellular RNAs, we have measured the ability of Harvey sarcoma viruses (HaSVs) with artificial 3' termini to recover a retroviral 3' terminus from helper Moloney virus (MoV) by illegitimate and homologous recombination. For this purpose, mouse NIH 3T3 cells were transformed with Harvey proviruses and then superinfected with MoV. The proviruses lacked the 3' long terminal repeat and an untranscribed region of the 5' long terminal repeat to prevent virus regeneration from input provirus. Only 0-11 focus-forming units of HaSV were generated upon MoV superinfection of 3 x 10(6) cells transformed by Harvey proviruses with MoV-unrelated termini. This low frequency is consistent with illegitimate DNA recombination via random Moloney provirus integration 3' of the transforming viral ras gene in the 10(6)-kilobase mouse genome. When portions of murine viral envelope (env) genes were attached 3' of ras, 10(2)-10(5) focus-forming units of HaSV were generated, depending on the extent of homology with env of MoV. These recombinants all contained HaSV-specific sequences 5' and MoV-specific sequences 3' of the common env homology. They were probably generated by recombination during reverse transcription rather than by recombination among either input or secondary proviruses, since (i) the yield of recombinants was reduced by a factor of 10 when the env sequence was flanked by splice signals and (ii) HaSV RNAs without retroviral 3' termini would be inadequate templates for provirus synthesis. We conclude that there is no efficient illegitimate recombination in retroviruses. In view of known precedents of illegitimate DNA recombination, the structure of known viral onc genes, and our evidence for illegitimate DNA recombination via provirus integration, we favor the DNA model of transduction over the RNA model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.