Abstract

The Gal system of Saccharomyces cerevisiae is a paradigm for eukaryotic gene regulation. Expression of genes required for growth on galactose is regulated by the transcriptional activator Gal4. The activation function of Gal4 has been localized to 34 amino acids near the C terminus of the protein. The gal4D allele of GAL4 encodes a truncated protein in which only 14 amino acids of the activation domain remain. Expression of GAL genes is dramatically reduced in gal4D strains and these strains are unable to grow on galactose as the sole carbon source. Overexpression of gal4D partially relieves the defect in GAL gene expression and allows growth on galactose. A search for extragenic suppressors of gal4D identified recessive mutations in the SUG1 and SUG2 genes, which encode ATPases of the 19S regulatory complex of the proteasome. The proteasome is responsible for the ATP-dependent degradation of proteins marked for destruction by the ubiquitin system. It has been commonly assumed that effects of SUG1 and SUG2 mutations on transcription are explained by alterations in the proteolysis of gal4D protein. We have investigated this assumption. Surprisingly, we find that SUG1 and SUG2 alleles that are unable to suppress gal4D cause a larger increase in gal4D protein levels than do suppressing alleles. In addition, mutations in genes encoding subunits of the proteolytic 20S sub-complex of the proteasome increase the levels of gal4D protein but do not rescue its transcriptional activity. Therefore, an alteration in the proteolysis of gal4D by the proteasome cannot explain the effects of mutations in SUG1 and SUG2 on expression of GAL genes. These findings suggest that the 19S regulatory complex may play a more direct role in transcription.

Highlights

  • In the yeast Saccharomyces cerevisiae, expression of genes required for the metabolism of galactose is controlled by the positive regulator Gal4 and the negative regulator Gal80

  • It has been commonly assumed that effects of SUG1 and SUG2 mutations on transcription are explained by alterations in the proteolysis of gal4D protein

  • Characterization of the crl13 Mutation and Production of Congenic Strains Carrying Different sug2 Alleles—Despite the fact that mutations in SUG1 have been isolated in multiple different screens [1, 15, 22], until recently no mutant alleles of SUG2 besides sug2-1 were known

Read more

Summary

Introduction

In the yeast Saccharomyces cerevisiae, expression of genes required for the metabolism of galactose is controlled by the positive regulator Gal4 and the negative regulator Gal80. Mutations in genes encoding subunits of the proteolytic 20S sub-complex of the proteasome increase the levels of gal4D protein but do not rescue its transcriptional activity. An alteration in the proteolysis of gal4D by the proteasome cannot explain the effects of mutations in SUG1 and SUG2 on expression of GAL genes.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.