Abstract

Patterning of the vertebrate limb along the anterior-posterior axis is controlled by the zone of polarizing activity (ZPA) located at the posterior limb margin. One of the vertebrate Hh family members, Shh, has been shown to be able to mediate the function of the ZPA. Several naturally occurring mouse mutations with the phenotype of preaxial polydactyly exhibit ectopic Shh expression at the anterior limb margin. In this study, we report the molecular characterization of a spontaneous mouse mutation, Doublefoot (Dbf). Dbf is a dominant mutation which maps to chromosome 1. Heterozygous and homozygous embryos display a severe polydactyly with 6 to 8 digits on each limb. We show here that Shh is expressed normally in Dbf mutants. In contrast, a second Hh family member, Indian hedgehog (Ihh) which maps close to Dbf, is ectopically expressed in the distal limb bud. Ectopic Ihh expression in the distal and anterior limb bud results in the ectopic activation of several genes associated with anterior-posterior and proximal-distal patterning (Fgf4, Hoxd13, Bmp2). In addition, specific components in the Hedgehog pathway are either ectopically activated (Ptc, Ptc-2, Gli1) or repressed (Gli2). We propose that misexpression of Ihh, and not a novel Smoothened ligand as recently suggested (Hayes et al., 1998), is responsible for the Dbf phenotype. We consider that Ihh has a similar activity to Shh when expressed in the early Shh-responsive limb bud. To determine whether Dbf maps to the Ihh locus, which is also on chromosome 1, we performed an interspecific backcross. These results demonstrate that Dbf and Ihh are genetically separated by approximately 1.3 centimorgans, suggesting that Dbf mutation may cause an exceptionally long-range disruption of Ihh regulation. Although this leads to ectopic activation of Ihh, normal expression of Ihh in the cartilaginous elements is retained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.