Abstract
Antibody against cytoplasmic myosin, when microinjected into actively dividing cells, provides a physiological test for the role of actin and myosin in chromosome movement. Anti-Asterias egg myosin, characterized by Mabuchi and Okuno (1977, J. Cell Biol., 74:251), completely and specifically inhibits the actin activated Mg++ -ATPase of myosin in vitro and, when microinjected, inhibits cytokinesis in vivo. Here, we demonstrate that microinjected antibody has no observable effect on the rate or extent of anaphase chromosome movements. Neither central spindle elongation nor chromosomal fiber shortening is affected by doses up to eightfold higher than those require to uniformly inhibit cytokinesis in all injected cells. We calculate that such doses are sufficient to completely inhibit myosin ATPase activity in these cells. Cells injected with buffer alone, with myosin-absorbed antibody, or with nonimmune gamma-globulin, proceed normally through both mitosis and cytokinesis. Control gamma-globulin, labeled with fluorescein, diffuses to homogeneity throughout the cytoplasm in 2-4 min and remains uniformly distributed. Antibody is not excluded from the spindle region. Prometaphase chromosome movements, fertilization, pronuclear migration, and pronuclear fusion are also unaffected by microinjected antimyosin. These experiments demonstrate that antimyosin blocks the actomyosin interaction thought to be responsible for force production in cytokinesis but has no effect on mitotic or meiotic chromosome motion. They provide direct physiological evidence that myosin is not involved in force production for chromosome movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.