Abstract
We investigated the response of lipoprotein(a) [Lp(a)] levels to dietary fat and cholesterol in 633 baboons fed a series of 3 diets: a basal diet low in cholesterol and fat, a high-fat diet, and a diet high in fat and cholesterol. Measurement of serum concentrations in samples taken while the baboons were sequentially fed the 3 diets allowed us to analyze 3 Lp(a) variables: Lp(a)(Basal), Lp(a)(RF) (response to increased dietary fat), and Lp(a)(RC) (response to increased dietary cholesterol in the high-fat environment). On average, Lp(a) concentrations significantly increased 6% and 28%, respectively, when dietary fat and cholesterol were increased (P<0.001). As expected, most of the variation in Lp(a)(Basal) was influenced by genes (h(2)=0.881). However, less than half of the variation in Lp(a)(RC) was influenced by genes (h(2)=0.347, P<0. 0001), whereas the increase due to dietary fat alone was not significantly heritable (h(2)=0.043, P=0.28). To determine whether Lp(a) phenotypic variation was due to variation in LPA, the locus encoding the apolipoprotein(a) [apo(a)] protein, we conducted linkage analyses by using LPA genotypes inferred from the apo(a) isoform phenotypes. All of the genetic variance in Lp(a)(Basal) concentration was linked to the LPA locus (log of the odds [LOD] score was 30.5). In contrast, linkage analyses revealed that genetic variance in Lp(a)(RC) was not linked to the LPA locus (LOD score was 0.036, P>0.5). To begin identifying the non-LPA genes that influence the Lp(a) response to dietary cholesterol, we tested, in bivariate quantitative genetic analyses, for correlation with low density lipoprotein cholesterol [LDLC; ie, non-high density lipoprotein cholesterol less the cholesterol contribution from Lp(a)]. LDLC(Basal) was weakly correlated with Lp(a)(Basal) (rho(P)=0.018). However, LDLC(RC) and Lp(a)(RC) were strongly correlated (rho(P)=0. 382), and partitioning the correlations revealed significant genetic and environmental correlations (rho(G)=0.587 and rho(E)=0.251, respectively). The results suggest that increasing both dietary fat and dietary cholesterol caused significant increases in Lp(a) concentrations and that the response to dietary cholesterol was mediated by a gene or suite of genes that appears to exert pleiotropic effects on LDLC levels as well. The gene(s) influencing Lp(a) response to dietary cholesterol is not linked to the LPA locus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, thrombosis, and vascular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.