Abstract

1. In the present study we investigated the role of mast cells during inflammation in rat skin. As the release of several pro-inflammatory mediators, such as histamine and tumour necrosis factor alpha (TNFalpha), occurs following mast cell activation we studied whether mast cell degranulation and the release of both histamine (H) and TNFalpha occurred in a model of lipopolysaccharide (LPS)-induced plasma leakage in rat skin. 2. Plasma leakage in the rat skin was measured over a period of 2 h as the local accumulation of intravenous injection of 125I-human serum albumin (125I-HSA) in response to intradermal injection of LPS. LPS (10 microg site-1) produced an increase of plasma leakage (50.1+/-2.3 microl site-1) as compared to saline (9.0+/-3.2 microl site-1). Histological analysis of rat tissue showed that LPS induced a remarkable mast cell degranulation (59.8+/-2.1%) as compared to saline (13.5+/-2.2%). 3. Ketotifen (10-9 - 10-7 mol site-1), a well-known mast cell-membrane stabilizer, produced a dose-related inhibition of LPS-induced plasma leakage by 36+/-3.5%, 47+/-4.0%, 60+/-3.3% respectively. In addition, ketotifen (10-7 mol site-1) inhibited mast cell degranulation by 59. 2+/-2.7%. 4. Chlorpheniramine maleate (CPM) (10-9 - 10-7 mol site-1), an H1 histamine receptor antagonist only partially inhibited LPS-induced plasma leakage in rat skin (38+/-1.1% at the highest dose). Furthermore, CPM (10-7 mol site-1) did not prevent mast cell degranulation. 5. A polyclonal antibody against TNFalpha (1:500, 1:100, 1:50 v v-1 dilution), locally injected, decreased LPS-induced plasma leakage in the skin by 15+/-2.0%, 24+/-2.1% and 50+/-3.0% respectively. 6. Taken together these results suggest that LPS-induced plasma leakage in rat skin is mediated, at least in part, by mast cell degranulation and by the release of histamine and TNFalpha from these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.