Abstract
We have investigated the activation of mitogen-activated protein kinase (MAP-kinase) in KB human epidermoid carcinoma cells treated with interleukin 1 (IL-1). MAP-kinase activity was transient; the time required for activity to reach a maximal level was dependent upon the dose of IL-1, ranging from 15 minutes to 45 minutes. The level of kinase induction correlated well with dose-response curves for two characteristic IL-1-induced responses, PGE 2 and IL-6 production. MAP-kinase activity returned to basal levels within 2 hours regardless of the amount of IL-1 added to the system. Exposure of KB cells to free IL-1 was accordingly restricted to periods of 2 hours or less, by replacing IL-1 with an excess of IL-1 receptor antagonist. Even after 2 hours exposure, the ability of IL-1 to induce IL-6 or PGE 2 was still IL-1ra-inhibitable by more than 80%, suggesting that events downstream of, or parallel to MAP-kinase activation, requiring the continual formation of new IL-1 receptor complexes, are needed to fully elicit these responses. Two general serine/threonine kinase inhibitors, K252a and quercetin, were found to strongly inhibit MAP kinase in vivo with ED 50s of c. 100 nM and 30 μM, respectively. At these concentrations, both compounds effectively inhibited IL-1-driven PGE 2 and IL-6 induction without affecting general protein synthesis or secretion. Other non-selective kinase inhibitors had less effect on MAP-kinase activation or IL-1-induced biological responses. The transient activation of MAP-kinase induction correlated strikingly with activation of the transcription factor NF-κB. IL-1-induced NF-κB activation was, however, relatively insensitive to inhibition by K252a or quercetin. We suggest that MAP-kinase is likely to be a necessary, but not sufficient, intermediate in some (IL-6, PGE 2 induction) but not all (NF-κB activation) IL-1 responses in these cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.