Abstract

The pathogenic protozoan Leishmania donovani must gain entrance into mononuclear phagocytes to successfully parasitize man. The parasite's extra-cellular promastigote stage is ingested by human peripheral blood monocytes or monocyte-derived macrophages in the absence of serum, in a manner characteristic of receptor-mediated endocytosis. We have found remarkable similarities between the macrophage receptor(s) for promastigotes and a previously characterized eucaryotic receptor system, the mannose/fucose receptor (MFR), that mediates the binding of zymosan particles and mannose- or fucose-terminal glycoconjugates to macrophages. Ingestion of promastigotes by monocyte-derived macrophages was inhibited by several MFR ligands. Mannan (2.5 mg/ml) decreased ingestion by 63.7% (p less than 0.001), and the neoglycoproteins mannose-BSA and fucose-BSA (20 micrograms/ml) inhibited parasite ingestion by 46.5% and 39.6%, respectively (p less than 0.04). In contrast, promastigote ingestion by monocytes was unaffected by MFR ligands. These results are consistent with reports that MFR activity is present in monocyte-derived macrophages but not in monocytes. Furthermore, attachment of promastigotes to macrophages, assessed by using cytochalasin D to prevent phagocytosis, was reduced 49.8% by mannan. Reorientation of the MFR to the ventral surface of the cell was achieved by plating macrophages onto mannan-coated coverslips, reducing MFR activity on the exposed cell surface by 94% as assessed by binding of 125I-mannose-BSA. Under these conditions, ingestion of promastigotes was inhibited by 71.4% (p less than 0.006). Internalization of the MFR by exposure of macrophages to zymosan before infection with promastigotes resulted in a 62.3% decrease in parasite ingestion (p less than 0.006). Additionally NH4Cl, a weak lysosomotropic base that impairs MFR recycling, decreased macrophage ingestion of promastigotes by 38.2% (p less than 0.03, 30 mM NH4Cl). Subinhibitory concentrations of NH4Cl (10 mM) and of mannan (0.25 mg/ml) together inhibited parasite ingestion by 76.4% (p less than 0.002). These studies suggest that L. donovani promastigotes may utilize a receptor system on human monocyte-derived macrophages, the MFR, to efficiently parasitize the human host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.