Abstract

The role of the inner hair cells (IHCs) in generating the cochlear summating potentials (SP) was assessed by measuring SP, cochlear nerve action potentials (CAP), cochlear microphonics (CM) and 2f1-f2 distortion product otoacoustic emissions (DPOAEs) in 15 chinchillas with either acute chemical de-afferentation, accomplished by applying kainic acid to the round window, or surgical de-afferentation and basal IHC loss, which developed within two months after sectioning the auditory nerve. In the auditory nerve sectioned ears, type I ganglion cells disappeared whereas most, if not all, type II ganglion cells were still present. Histological analysis of surface preparations and sections through the modiolus verified the de-afferentation in both models and showed a large IHC loss at the base of the cochlea in the ears with the auditory nerve sectioned while other structures of the cochlea remained intact. Unoperated (left) ears of 9 animals served as controls. CM and DPOAEs were normal in all ears whereas the CAP was substantially depressed in de-afferented ears. Comparisons among the SP input-output functions suggest that (1) the IHCs are the major generator of SP recorded from the round window in chinchilla, in particular at low to moderate stimulus levels, (2) the SP recorded from the round window largely reflects the responses from hair cells at the base of the cochlea, and (3) kainic acid results in an increase of SP amplitude to high-level stimuli whereas the SP to low- to moderate-level stimuli remains in the normal range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call