Abstract

Severe hemorrhage lowers arterial pressure by suppressing sympathetic activity. This study tested the hypothesis that the decompensatory phase of hemorrhage is mediated by the ventrolateral periaqueductal gray (vlPAG), a region importantly involved in the autonomic and behavioral responses to stress and trauma. Neuronal activity in the vlPAG was inhibited with either lidocaine or cobalt chloride 5 min before hemorrhage (2.5 ml/100 g body wt) was initiated in conscious, unrestrained rats. Bilateral injection of lidocaine (0.5 microl of a 2% or 1 microl of a 5% solution) into the caudal vlPAG delayed the onset and reduced the magnitude of the hypotension produced by hemorrhage significantly. In contrast, inactivation of the dorsolateral PAG with lidocaine was ineffective. Cobalt chloride (5 mM; 0.5 microl), which inhibits synaptic transmission but not axonal conductance, also attenuated hemorrhagic hypotension significantly. Microinjection of lidocaine or cobalt chloride into the vlPAG of normotensive, nonhemorrhaged rats did not influence cardiovascular function. These data indicate that the vlPAG plays an important role in the response to hemorrhage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.