Abstract

The sea urchin blastula secretes a hatching enzyme (HE) that dissolves the fertilization envelope. HE was collected from the supernatant seawater of cultures of hatched Strongylocentrotus purpuratus blastulae, and concentrated 20 times by ultrafiltration. The proteolytic activity of HE using casein as substrate was inhibited by the chymotrypsin inhibitors, chymostatin and N-tosyl-L-phenylalanine chloromethyl ketone. The activity was not inhibited by inhibitors (antipain, elastatinal, pepstatin, phosphoramidon, soybean trypsin inhibitor, and N alpha-p-tosyl-L-lysine chloromethyl ketone) of other types of proteases. HE did not hydrolyze the synthetic trypsin substrate, alpha-N-benzoyl-L-arginine ethyl ester, but did hydrolyze the synthetic substrate of chymotrypsin, N-benzoyl-L-tyrosine ethyl ester (BTEE). The BTEEase activity of HE was completely inhibited by the chymotrypsin inhibitors chymostatin and 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC). Chymostatin inhibited the natural hatching of sea urchin blastulae. Application of HE to freshly fertilized sea urchin eggs, 2 h after insemination, caused premature dispersal of the hardened fertilization envelope. Chymostatin and NCDC inhibited HE-induced lysis of the fertilization envelope, while inhibitors of other types of proteases were ineffective. These data suggest that sea urchin HE is a chymotrypsin-like protease we call "chymotrypsin."

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.