Abstract
The Alpha class glutathione S-transferases (GSTs) in human liver are composed of polypeptides of Mr 25,900. These enzymes are dimeric, and two immunochemically distinct subunits, B1 and B2, have been described that combine to form GSTs B1B1, B1B2 and B2B2 [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Gradient affinity elution from GSH-Sepharose has been used to resolve the three Alpha class GSTs, and this method has been applied to demonstrate marked inter-individual differences in the hepatic content of GSTs B1B1, B1B2 and B2B2. The B1 and B2 subunits can be resolved by reverse-phase h.p.l.c., and their elution positions suggest that they are equivalent to the alpha chi and alpha y h.p.l.c. peaks described by Ketterer and his colleagues [Ostlund Farrants, Meyer, Coles, Southan, Aitken, Johnson & Ketterer (1987) Biochem. J. 245, 423-428]. The B1 and B2 subunits have now been cleaved with CNBr and the fragments subjected to automated amino acid sequence analysis. The sequence data show that B1 and B2 subunits do not arise from post-translational modification, as had been previously believed for the hepatic Alpha class GSTs, but are instead the products of separate genes; B1 and B2 subunits were found to contain different amino acid residues at positions 88, 110, 111, 112, 116, 124 and 127. The relationship between the B1 and B2 subunits and the cloned GTH1 and GTH2 cDNA sequences [Rhoads, Zarlengo & Tu (1987) Biochem. Biophys. Res. Commun. 145, 474-481] is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.