Abstract
Formation of cortical granules was examined in superovulated oocytes from three marsupial species, brushtail possums (Trichosurus vulpecula) tammar wallabies (Macropus eugeniii) and grey short-tailed opossums (Monodelphis domestica) and in oocytes obtained during natural cycles in Macropus eugenii. Superovulation was induced by pregnant mares' serum gonadotrophin/gonadotrophin-releasing hormone (PMSG/GnRH) protocols and natural ovulation by removal of pouch young. Oocytes were collected after ovariectomy or by laparoscopically guided follicle aspiration into Hanks balanced salt solution (HBSS) supplemented with either 2.5% fetal calf serum (FCS) or 2.5% bovine serum albumin (BSA). Ovulated oocytes were collected by removing and flushing the oviducts with HBSS and fixed immediately for electron microscopy. There were no differences in the morphology or timing of formation of cortical granules between superovulated and naturally cycling animals. Cortical granules were absent from germinal vesicle (GV) stage follicular oocytes before the luteinizing hormone (LH) surge in all species. Dark cortical granules, similar in appearance to those seen in the oocytes of eutherian mammals, were found just beneath the plasma membrane (9 per 100 microns of plasma membrane) of preovulatory oocytes at germinal vesicle, metaphase 1 or anaphase 1 stages. In addition, they contained a number of less electron-dense cortical granules (12 per 100 microns plasma membrane). The cortical cytoplasm of preovulatory oocytes was rich in Golgi complexes actively involved in vesicle formation. Large numbers of dark cortical granules (90 per 100 microns plasma membrane) were found only in ovulated oocytes. A small number of cortical granules of lighter electron density were also present in ovulated oocytes. This suggests that the marsupial oocyte is following a very different timetable for cortical granule formation and accumulation from eutherian mammals and that oocytes of marsupials may not achieve cytoplasmic maturity until after ovulation. The significance of these events for fertilization and development remains to be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.