Abstract

Physiological concentrations of progesterone (20-100 ng/ml), maintained by the insertion of implants into 30-day-old rats, delayed first ovulation, and withdrawal of progesterone on day 47 of age synchronized first ovulation in rats. Inhibition of ovulation involved negative feedback regulation of tonic LH and FSH secretion, blockage of gonadotropin surges, and suppression of preovulatory, but not antral, follicular growth. Removal of implants resulted in a rapid decline in serum progestrone from 100 to 5 ng/ml within 0-12 h. Between 0-36 h there were progressive increases in serum concentrations of LH and FSH, enhanced accumulation of estradiol by individual follicles incubated in vitro with or without exogenous substrate, and marked progressive increases in the content of LH (but not FSH) receptors in both thecal and granulosa cells. These events were followed by gonadotropin surges at 48 h (1800 h on day 49), ovulation, and morphological and biochemical signs of luteinization, including decreases in follicular gonadotropin receptor content and estradiol accumulation, evident by 60 h. With the exception of changes in basal LH, this sequence of events is remarkably similar in time and pattern to that after the decline of progesterone on diestrous day 2 and ovulation on proestrus of a 5-day cycle. Although a direct effect of progesterone on ovarian follicular cell function cannot be excluded, the data suggest that subtle but sustained increases in LH (and possibly FSH) are required for the enhanced follicular accumulation of estradiol and LH-binding activity occurring between diestrus and proestrus of the rat estrous cycle. Thus, perhaps some of the mystery surrounding the endocrine events between diestrus and proestrus can be ascribed to changes in serum LH that have been too small and/or variable for current nonserial sampling methods and RIAs to detect reliably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.