Abstract

In retinitis pigmentosa (RP), the slow and progressive death of inner retinal neurons is thought to be inevitable after the death of photoreceptors. However, even in the advanced stage of RP, all inner retinal neurons are not completely lost. The morphological and electrophysiological modifications in ON-retinal bipolar cells (ON-RBCs) of Royal College of Surgeons (RCS) rats (RCS-ON-RBCs) were investigated to elucidate the mechanisms of survival of RCS-ON-RBCs in RP. Control (CTR) and RCS rats were divided into age groups according to postnatal stage: postnatal day 21 (Pn21d), postnatal day 30 (Pn30d), postnatal day 60 (Pn60d), and postnatal day 90 (Pn90d). Lucifer yellow staining of single ON-RBCs and double-immunofluorescence of the retinal frozen sections were used to detect the morphological modifications and loss of RCS-ON-RBCs in different retinal regions. The whole-cell patch clamping technique was used to record the electrophysiological properties of ON-RBCs. There was a significant loss of RCS-ON-RBCs compared with CTR (p < 0.01) at Pn60d. Loss of the RCS-ON-RBCs differed by region. From Pn60d onwards, the loss was more severe in the peripheral retinal regions (p < 0.01). From Pn21d, the ectopic neurites from the RCS-ON-RBCs reached the outer and inner nuclear layers. At Pn60d, terminal branches of RCS-ON-RBCs axons vanished and ectopic neurites from the RCS-ON-RBCs became entwined. The resting membrane potential, input resistance and outward membrane current amplitude of RCS-ON-RBCs were significantly higher than those of the ON-RBCs of CTR rats at Pn60d (p < 0.05). Our results indicate that more RCS-ON-RBCs survived in the central retinal area near cone clusters, potentially as a result of ectopic neuritis. Meanwhile the surviving RCS-ON-RBCs remained immature and had no normal electrophysiological characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.