Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the spinal cord resulting in progressive paralysis and death. The pathogenic mechanism of ALS is unknown but may involve increased oxidative stress, overactivation of glutamate receptors, and apoptosis. We report abnormalities in sphingolipid and cholesterol metabolism in the spinal cords of ALS patients and in a transgenic mouse model (Cu/ZnSOD mutant mice), which manifest increased levels of sphingomyelin, ceramides, and cholesterol esters; in the Cu/ZnSOD mutant mice, these abnormalities precede the clinical phenotype. In ALS patients and Cu/Zn-SOD mutant mice, increased oxidative stress occurs in association with the lipid alterations, and exposure of cultured motor neurons to oxidative stress increases the accumulation of sphingomyelin, ceramides, and cholesterol esters. Pharmacological inhibition of sphingolipid synthesis prevents accumulation of ceramides, sphingomyelin, and cholesterol esters and protects motor neurons against death induced by oxidative and excitotoxic insults. These findings suggest a pivotal role for altered sphingolipid metabolism in the pathogenesis of ALS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.