Abstract

We observed recently that a single G3.U70 base pair in the amino acid acceptor stem of an Escherichia coli alanine tRNA is a major determinant for its identity. Inspection of tRNA sequences shows that G3.U70 is unique to alanine in E. coli and is present in eucaryotic cytoplasmic alanine tRNAs. We show here that single nucleotide changes of G3.U70 to A3.U70 or to G3.C70 eliminate in vitro aminoacylation of an insect and of a human alanine tRNA by the respective homologous synthetase. Compared to the influence of G3.U70, other sequence variations in tRNAAla have a relatively small effect on aminoacylation by the insect and human enzymes. In addition, while these eucaryotic tRNAs have nucleotide differences from E. coli alanine tRNA, they are heterologously charged only with alanine when expressed in E. coli. The results indicate a functional role for G3.U70 that is conserved in evolution. They also suggest that the sequence differences between E. coli and the eucaryotic alanine tRNAs at sites other than the conserved G3.U70 do not create major determinants for recognition by any other bacterial enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.