Abstract

The study of the evolution of floral traits has generally focused on pollination as the primary driver of selection. However, herbivores can also impose selection on floral traits through a variety of mechanisms, including florivory and parasitism. Less well understood is whether floral and inflorescence architecture traits that influence a plant's tolerance to herbivory, such as compensatory regrowth, alter pollinator-mediated selection. Because herbivore damage to Lythrum salicaria meristems typically leads to an increase in the number of inflorescences and the size of the floral display, an experiment was conducted to test whether simulated herbivory (i.e. clipping the developing meristem) could alter the magnitude or direction of pollinator-mediated selection on a suite of floral and inflorescence architecture traits. Using a pollen supplementation protocol, pollen limitation was compared in the presence and absence of meristem damage in order to quantify any interaction between pollinator and herbivore-mediated selection on floral traits. Surprisingly, in spite of an obvious impact on floral display and architecture, with clipped plants producing more inflorescences and more flowers, there was no difference in pollen limitation between clipped and unclipped plants. Correspondingly, there was no evidence that imposing herbivore damage altered pollinator-mediated selection in this system. Rather, the herbivory treatment alone was found to alter direct selection on floral display, with clipped plants experiencing greater selection for earlier flowering and weaker selection for number of inflorescences when compared with unclipped plants. These findings imply that herbivory on its own can drive selection on plant floral traits and inflorescence architecture in this species, even more so than pollinators. Specifically, herbivory can impose selection on floral traits if such traits influence a plant's tolerance to herbivory, such as through the timing of flowering and/or the compensatory regrowth response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call