Abstract

Several authors have suggested that 27-hydroxycholesterol may be an important physiological regulator of cholesterol homeostasis. In the present study we investigated the possibility that 24- or 27-hydroxylation of cholesterol is of importance for the down-regulation of hydroxymethylglutaryl (HMG)-CoA reductase in mouse liver induced by dietary cholesterol. Using an accurate method based on isotope dilution-mass spectrometry with deuterated internal standards, we were able to detect significant levels of both 24- and 27-hydroxycholesterol in liver homogenates from normal mice. Feeding cholesterol, 2% for 4 days, increased the levels by 80 and 30%, respectively. No significant hepatic levels of 25-hydroxycholesterol could be demonstrated in untreated mice, and the level of this steroid in cholesterol-treated mice was just above the detection limit. Mouse liver mitochondria were able to catalyze 24- as well as 27-hydroxylation, but not 25-hydroxylation of cholesterol. There was no such conversion in liver microsomes. When using 24-2H2- or 23,23,24,24,25-2H5-labeled cholesterol as substrate a kinetic isotope effect of about 4.5 was observed for the mitochondrial 24-hydroxylation. When using 26,26,26,27,27,27-2H6-labeled cholesterol as substrate a kinetic isotope effect of about 2.5 was observed for the 27-hydroxylation. Use of those deuterium-labeled cholesterol species thus allowed a specific suppression of the rate of 24- and 27-hydroxylation. Feeding mice with 0.05% unlabeled pure cholesterol in the diet for 24 h inhibited the hepatic HMG-CoA reductase activity by about 50%. The same degree of suppression was obtained after feeding with 23,23,24,24,25-2H5- and 26,26,26,27,27,27-2H6-labeled cholesterol. Were mitochondrial 24- and 27-hydroxylation of importance, one would expect reduced suppression of HMG-CoA reductase when feeding deuterated cholesterol, due to the isotope effects. As this was not the case, it is concluded that neither 24-hydroxylation nor 27-hydroxylation are critical for the cholesterol-induced down-regulation of HMG-CoA reductase in mouse liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call