Abstract
Stimulation of cutaneous foot afferents has been shown to evoke a facilitation of the tibialis anterior (TA) EMG-activity at a latency of 70-95 ms in the early and middle swing phase of human walking. The present study investigated the underlying mechanism for this facilitation. In those subjects in whom it was possible to elicit a reflex during tonic dorsiflexion while seated (6 out of 17 tested), the facilitation in the TA EMG evoked by stimulation of the sural nerve (3 shocks, 3-ms interval, 2.0-2.5x perception threshold) was found to have the same latency in the swing phase of walking. The facilitation observed during tonic dorsiflexion has been suggested to be -- at least partly -- mediated by a transcortical pathway. To investigate whether a similar mechanism contributes to the facilitation observed during walking, magnetic stimulation of the motor cortex (1.2x motor threshold) was applied in the early swing phase at different intervals in relation to the cutaneous stimulation in 17 subjects. In 13 of the subjects, the motor potentials evoked by the magnetic stimulation (MEPs) were more facilitated by prior sural-nerve stimulation (conditioning-test intervals of 50-80 ms) than the algebraic sum of the control MEP and the cutaneous facilitation in the EMG when evoked separately. In four of these subjects, a tibialis anterior H-reflex could also be evoked during walking. In none of the subjects was an increase of the H-reflex similar to that for the MEP observed. In five experiments on four subjects, MEPs evoked by magnetic and electrical cortical stimulation were compared. In four of these experiments, only the magnetically induced MEPs were facilitated by prior stimulation of the sural nerve. We suggest that a transcortical pathway may also contribute to late cutaneous reflexes during walking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.