Abstract

White clover is polymorphic for cyanogenesis, with both cyanogenic and acyanogenic plants occurring in nature. This chemical defense polymorphism is one of the longest-studied and best-documented examples of an adaptive polymorphism in plants. It is controlled by two independently segregating genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolyzing enzyme, linamarase. Whereas Li is well characterized at the molecular level, Ac has remained unidentified. Here we report evidence that Ac corresponds to a gene encoding a cytochrome P450 of the CYP79D protein subfamily (CYP79D15), and we describe the apparent molecular basis of the Ac/ac polymorphism. CYP79D orthologs catalyze the first step in cyanogenic glucoside biosynthesis in other cyanogenic plant species. In white clover, Southern hybridizations indicate that CYP79D15 occurs as a single-copy gene in cyanogenic plants but is absent from the genomes of ac plants. Gene-expression analyses by RT-PCR corroborate this finding. This apparent molecular basis of the Ac/ac polymorphism parallels our previous findings for the Li/li polymorphism, which also arises through the presence/absence of a single-copy gene. The nature of these polymorphisms may reflect white clover's evolutionary origin as an allotetraploid derived from cyanogenic and acyanogenic diploid progenitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.