Abstract

One limitation of using digital breast tomosynthesis (3-dimensional [3D] mammography) technology with conventional (2-dimensional [2D]) mammography for breast cancer (BC) screening is the increased radiation dose from dual acquisitions. To resolve this problem, synthesized 2D (s2D) reconstruction images similar to 2D mammography were developed using tomosynthesis acquisitions. The present review summarizes the evidence for s2D versus digital mammography (2D) when using tomosynthesis (3D) for BC screening to address whether using s2D instead of 2D (alongside 3D) will yield similar detection measures. Comparative population screening studies have provided consistent evidence that cancer detection rates do not differ between integrated 2D/3D (range, 5.45-8.5/1000 screens) and s2D/3D (range, 5.03-8.8/1000 screens). Also, although the recall measures were relatively heterogeneous across included studies, little difference was found between the 2 modalities. The mean glandular dose for s2D/3D was 55% to 58% of that for 2D/3D. In the context of BC screening, s2D/3D involves substantially less radiation than 2D/3D and provides similar detection measures. Thus, consideration of transitioning to tomosynthesis screening should aim to use s2D/3D to minimize harm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.