Abstract

We present high-cadence photometric and spectroscopic observations of SN 2023axu, a classical Type II supernova with an absolute V-band peak magnitude of –17.2 ± 0.1 mag. SN 2023axu was discovered by the Distance Less Than 40 Mpc (DLT40) survey within 1 day of the last nondetection in the nearby galaxy NGC 2283 at 13.7 Mpc. We modeled the early light curve using a recently updated shock cooling model that includes the effects of line blanketing and found the explosion epoch to be MJD 59971.48 ± 0.03 and the probable progenitor to be a red supergiant. The shock cooling model underpredicts the overall UV data, which point to a possible interaction with circumstellar material. This interpretation is further supported by spectral behavior. We see a ledge feature around 4600 Å in the very early spectra (+1.1 and +1.5 days after the explosion), which can be a sign of circumstellar interaction. The signs of circumstellar material are further bolstered by the presence of absorption features blueward of Hα and Hβ at day >40, which is also generally attributed to circumstellar interaction. Our analysis shows the need for high-cadence early photometric and spectroscopic data to decipher the mass-loss history of the progenitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call