Abstract

BackgroundArboviruses are viruses transmitted to humans and other animals by the bite of hematophagous arthropods. Infections caused by chikungunya virus (CHIKV), dengue virus (DENV), Zika virus (ZIKV), and the deadlier yellow fever virus (YFV) are current public health problems in several countries, mainly those located in tropical and subtropical regions. One of the main prevention strategies continues to be vector control, with the elimination of breeding sites and surveillance of infested areas. The use of ovitraps for Aedes mosquitos monitoring has already demonstrated promising results, and maybe be also useful for arboviral surveillance.MethodsThis work aimed to detect natural vertical transmission of arboviruses in Aedes aegypti and Aedes albopictus. Mosquito egg collection was carried out using ovitraps in Itacoatiara, a mid-size city in Amazonas state, Brazil. Collected eggs were allowed to hatch and larvae were tested for CHIKV, DENV, and ZIKV RNA by RT-qPCR.ResultsA total of 2,057 specimens (1,793 Ae. aegypti and 264 Ae. albopictus), in 154 larvae pools were processed. Results showed one positive pool for CHIKV and one positive pool for ZIKV. The active ZIKV infection was further confirmed by the detection of the negative-strand viral RNA and nucleotide sequencing which confirmed the Asian genotype. The Infection Rate per 1,000 mosquitoes tested was assessed by Maximum Likelihood Estimation (MLE) with 0.45 and 0.44 for CHIKV and ZIKV, respectively, and by Minimum Infection Rate (MIR) with 0.45 for both viruses.ConclusionTo our knowledge, this is the first detection of ZIKV in natural vertical transmission in the Ae. aegypti, a fact that may contribute to ZIKV maintenance in nature during epidemics periods. Furthermore, our results highlight that the use of ovitraps and the molecular detection of arbovirus may contribute to health surveillance, directing the efforts to more efficient transmission blockade.

Highlights

  • The Infection Rate per 1,000 mosquitoes tested was assessed by Maximum Likelihood Estimation (MLE) with 0.45 and 0.44 for chikungunya virus (CHIKV) and Zika virus (ZIKV), respectively, and by Minimum Infection Rate (MIR) with 0.45 for both viruses. This is the first detection of ZIKV in natural vertical transmission in the Ae. aegypti, a fact that may contribute to ZIKV maintenance in nature during epidemics periods

  • Our results highlight that the use of ovitraps and the molecular detection of arbovirus may contribute to health surveillance, directing the efforts to more efficient transmission blockade

  • We found one larva pool infected with chikungunya virus, before the first human case confirmed in this municipality

Read more

Summary

Introduction

The arboviruses transmitted by mosquitoes of the genus Aedes, like chikungunya virus (CHIKV), dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) have reached threatening numbers in the last years, with a huge impact on public health systems in several countries throughout the world [1,2,3,4,5,6,7]. With the fast-worldwide expansion of new emerging or reemerging arboviruses such as CHIKV, DENV, and ZIKV, the need to establish the role of each mosquito species in the spread of these pathogens is clear. This knowledge is fundamental to the implementation of effective surveillance and control measures against these vectors in order to avoid the early establishment of an arboviral epidemic [8]. The use of ovitraps for Aedes mosquitos monitoring has already demonstrated promising results, and maybe be useful for arboviral surveillance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call