Abstract

By studying low radiative efficiency blue III-nitride light emitting diodes (LEDs), we find that the ABC model of recombination commonly used for understanding efficiency behavior in LEDs is insufficient and that additional effects should be taken into account. We propose a modification to the standard recombination model by incorporating a bimolecular nonradiative term. The modified model is shown to be in much better agreement with the radiative efficiency data and to be more consistent than the conventional model with very short carrier lifetimes measured by time-resolved photoluminescence in similar, low radiative efficiency material. We present experimental evidence that a hot carrier-generating process is occurring within these devices, in the form of measurements of forward photocurrent under forward bias. The forward photocurrent, due to hot carrier generation in the active region, is present despite the lack of any “efficiency droop”—the usual signature of band-to-band Auger recombination in high-quality III-nitride LEDs. Hot carrier generation in the absence of band-to-band Auger recombination implies that some other source of hot carriers exists within these low radiative efficiency devices, such as trap-assisted Auger recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.