Abstract

Storage of an internal field in a polymeric semiconductor device should be of great interest for applications like photovoltaic solar cells to facilitate exciton dissociation and improve charge transport in the structure. Orientation of polar molecules, contained inside a polymer binder, induces a rectifying effect, behaving as a distributed homojunction within a single polymeric film. To investigate this concept, a new poly( p-phenylenevinylene) (PPV) derivative bearing push–pull like molecules was purposefully designed and synthesized. Effect of polar molecules’ orientation on carrier injection and transport properties was studied. In the test systems, we demonstrate an increase of the external quantum efficiency upon orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.