Abstract

First-principles calculations are performed to study the electronic and magnetic properties of VX(2) monolayers (X = S, Se). Our results unveil that VX(2) monolayers exhibit exciting ferromagnetic behavior, offering evidence of the existence of magnetic behavior in pristine 2D monolayers. Furthermore, interestingly, both the magnetic moments and strength of magnetic coupling increase rapidly with increasing isotropic strain from -5% to 5% for VX(2) monolayers. It is proposed that the strain-dependent magnetic moment is related to the strong ionic-covalent bonds, while both the ferromagnetism and the variation in strength of magnetic coupling with strain arise from the combined effects of both through-bond and through-space interactions. These findings suggest a new route to facilitate the design of nanoelectronic devices for complementing graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.