Abstract

AbstractA large number of farmed Atlantic salmon escape from sea cages and hatcheries annually. Selection programmes and domestication have changed the genetic composition of farmed salmon to improve their performance in the culture environment, which apparently occurs at the cost of their fitness in the natural environment. Therefore, gene flow from farmed salmon to wild salmon populations may have altered the genetic composition of wild salmon populations. To investigate the temporal genetic stability in seven wild Norwegian salmon populations, genetic profiles were produced from historical and contemporary scale samples. Historical and contemporary samples of salmon from the Namsen, Etne, Opo, Vosso, Granvin, Eio, and Hå Rivers were genotyped at the following eight microsatellite loci: Ssa13.37, Ssa28, SsOSL85, Ssa197, Ssa20.19, SsaF43, Ssa202, and Ssa85. A significant change in genetic profiles was observed over time in the Opo, Vosso, and Eio Rivers, but no changes in genetic profiles were observed in the Namsen, Etne, Granvin, and Hå Rivers. A small reduction in FST values and genetic distances among populations was observed in the contemporary samples compared with the historical samples, indicating a eduction in population differentiation over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.