Abstract

Temperature profiles of the first and the second moment of the nematic order parameter distribution function, as determined from the deuteron nuclear magnetic resonance line shapes, as well as heat capacity response, provide support for the supercritical scenario of the nematic-paranematic phase transition in liquid single crystal elastomers. The relative strength of the locked-in internal mechanical field with respect to the critical field can be decreased by swelling the elastomer samples with low molecular mass nematogen. By increasing the concentration of the dopant, critical and below-critical behavior is promoted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.