Abstract

During aging, there is evidence of microstructural changes in certain cortical and subcortical brain regions. Diffusion tensor imaging (DTI) is used to study age related microstructural changes in the acoustic pathway. Twenty healthy volunteers (mean age 28.5 years) and 15 healthy volunteers (mean age 61.3 years) were examined using a 1.5-T MR system with a high-resolution T1-weighted sequence and an integrated parallel imaging technique DTI Echo-planar-imaging (EPI) sequence. For reliability, 10 subjects underwent a second examination 2 days later. The fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were measured in six brain regions of the auditory pathway. We found no left/right asymmetry in the selected brain structures. There were no significant differences (P < .05) in the ADC and FA in the lateral lemniscus and medial geniculate body of young and elderly subjects. However, FA was significantly increased (P < .05) in the inferior colliculus and decreased in the auditory radiation, the superficial temporal gyrus, and the transverse temporal gyrus in the elder subjects than in the younger ones. There were no significant differences in anisotropy in subsequent examinations in the younger individuals. These findings suggest evidence of age-related changes in the acoustic pathway. These changes are associated with a decrease in anisotropy mainly in the cortical grey and white matter rather than in the subcortical regions. Our DTI measurements were reproducible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.