Abstract

Many processes have been considered over the years to explain the origin of breakdown in cable insulation. Such effects as space charge build-up, tree growth, charge injection, etc. have all been discussed. Various techniques are now available to measure, in a nondestructive way, space charge distributions in insulators. These techniques, for instance the pressure wave propagation (PWP) method, can be used under applied electric stress and thus make it possible to follow the development of space charge in selected regions of the insulators. In this paper we present new evidence linking space charge buildup, tree growth and breakdown in XLPE. We have used the PWP method to monitor the charge distribution as a function of time under dc stress in high insulating thickness cable. We show that for certain insulation systems the space charge buildup can increases the local field to a value which is more than 8/spl times/ the applied electric field, leading to breakdown. Post-mortem analysis followed by optical microscopy shows the presence of electrical trees, the breakdown channel being centered on one of them. The study of space charge evolution in practical insulations permits an understanding of the role of space charge in dc breakdowns. This understanding enables the development of technologies to suppress this effect and hence realize practical dc XLPE transmission cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.