Abstract

The packaging of DNA into proper chromatin structure contributes to transcriptional regulation. This packaging is environment sensitive, yet its role in adaptation to novel environmental conditions is completely unknown. We set out to identify candidate chromatin-remodeling loci that are differentiated between tropical and temperate populations in Drosophila melanogaster, an ancestrally equatorial African species that has recently colonized temperate environments around the world. Here we describe sequence variation at seven such chromatin-remodeling loci, four of which (chd1, ssrp, chm, and glu) exhibit strong differentiation between tropical and temperate populations. An in-depth analysis of chm revealed sequence differentiation restricted to a small portion of the gene, as well as evidence of clinal variation along the east coasts of both the United States and Australia. The functions of chd1, chm, ssrp, and glu point to several novel hypotheses for the role of chromatin-based transcriptional regulation in adaptation to a novel environment. Specifically, both stress-induced transcription and developmental homeostasis emerge as potential functional targets of environment-dependent selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.