Abstract

We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call