Abstract

It is difficult to collect the crack propagation signal under general continuous welding condition due to other signal interference of molten pool. In order to study the effect of residual stress on crack propagation, acoustic emission technology was successfully applied to monitor welding process according to the characteristics of pulsed laser welding. Crack free welding is achieved by reducing the pulse interval to limited the crack size of single pulse welding spot. The welding process was monitored synchronously by high speed photography and acoustic emission, the evidence of crack propagation after solidification of weld is successfully captured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.